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Abstract

A new approach is developed to reduce the computational complexity of a moving average
Least Mean Square Fit (LMSF) procedure. For a long data window. a traditional batch
approach would result in a large number of multiplication and add operations (i.e., an
order N, where N is the window length). This study shows that the moving average batch
LMSF procedure could be made equivalent to a recursive process with identical filter
memory length but at an order of reduction in computational load. The increase in speed
due to reduced computation make the moving average LMSF procedure competitive for
many real time processing applications. Finally. this paper will also address the numerical
accuracy and stability of the algorithm.

Introduction

In processing a long stream of digital data, a polynomial moving average Least Mean
Square Fit (LMSF) is often used to provide smoothing or filtering of the noisy component
imbedded in the data [1]. The LMSF has a finite duration memory which is determined
by the length of the moving window.

There are several advantages in using a moving average polynomial LMSF [2|. First and
foremost is that LMSF provides a stable operation since the polynomial coefficients are
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obtained from a bank of Finite Impulse Response (FIR) filters operating on the data
sequence. Secondly, the finite memory window assures us that bad data points lie outside
the window will have no effect on the resulting LMSF estimates.

On the other hand, there are also a number of disadvantages in the moving average LMSF
application. First is that the sizable amount of memory storage required for data lie
within the operating window. Second is the apparent large computational requirement in
comparison to the recursive implementation using Infinite Impulse Response filters '3]. The
study presented here shows that while the size of storage requirement is unchanged, the
computational load can be reduced significantly via an equivalent recursive formulation.

Methodology

Let Z,, denote a vector containing N consecutive data points from a measurement sequence,

A, denote a vector containing the coefficients from an Mt order polynomial, and H be
the N x (M + 1) dimensional matrix that relates A, to Z,. Then the LMSF solution of
A, is given by:

A, = (HTH)_IHTZH . (1)
This can also be written as
A.=(HTH) ‘X, (2)
where
X,=H"Z, . (3)

Note the subtle difference between Eqgs. (1) and (2). First, Z, is an .N dimensional vector.
For all practical purposes, N, the number of data points, is much larger than M, the
order of the LMSF. Second. the matrix (HT H)"'H7T in Eq. (1) is (M + 1) x N dimension,
and the matrix (HTH)"! in Eq. (2) is (M — 1) x (M — 1) dimension. Thus assuming
that Z, and X,, are known, then computing A, wvia Eq. (2) will result in savings by a
reduction factor of (M — 1)/N of the number of multiplications and adds. For example,
given a typical value of N = 100 and M = 4, we have (M + 1)/N = .05. This is indeed a
significant reduction in computation. Of course. the factor (M ~ 1)/N is the ideal lower
bound since additional computations are required to obtain X, from Z,. If X, was obtain
from Z, directly using Eq. (3), then no reduction in computation is gained. Thus, it is
desired to obtain an efficient computation of X, from Z,. Consequently, we will obtain
an efficient algorithm to calculate A, for each moving window of length N. This has been

accomplished using a recursive formulation 4 . The derivations are somewhat lengthy and
therefore will not be shown here.



Speed Comparison

Both the batch and the recursive approaches were implemented on a VAX-11/780 machine.
Using a number of different length windows, both approaches were used to process over
10,000 data points with the resulting CPU times carefully recorded. One can define the
ratio of the recursive CPU time to the batch CPU time as the speed reduction ratio or
speed ratio (SR) for short. Figure 1 shows a typical SR result. Also shown in Figure 1 is
the lower bound, which was theorectically calculated and is given by the formula [4]:

Na Nm
LB: I/ J\’ - _]\" . 4
(Tm + Ta ) (M=~ 1) (4)

where Na, Nm is the number of additions and multiplications respectively for the recursive
approach. Ta and Tm are the machine cycle time required for a single add and multiply
respectively.

Close study of Figure 1 shows that the actual SRs fall off as a function of window length
at a rate similar to the lower bound. The significant difference between the actual SR
and the lower bound is due to programming overhead cost; i.e., CPU time expended for
non-arithmetic operations. With more efficient programming, this difference is expected
to reduce. At any rate, Figure 1 shows that at a window length of 200 data points, the
recursive CPU time is only 20 percent of the batch CPU time. The corresponding number
for the lower bound, however, is only 4 percent. On the other hand, for a small data
window, say .V < 10, the differences between the two approaches become insignificant.
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Figure 1. Speed reduction ratio versus window length



Summary and Conclusions

This study developed an efficient recursive algorithm to implement a moving average Least
Mean Square Fit (LMSF) procedure. The following briefly summarizes the significant
findings of this study.

1.

A recursive formulation of a moving average LMSF can be implemented with a

theorectical ratio in computation reduction (recursive over batch ) of (3M ~4)/2N,
where M is the order of the LMSF and N is the window length.

Ignoring the potential singular value inversion and other numerical problems, re-

cursive moving average LMSF gives outputs identical to the batch LMSF when the
data window is filled. However, prior to attaining the full data window, the recur-
sive approach has the additional advantage that it could also provide meaningful
outputs if good a priori information is used to initiate the recursion.

We have shown the speed advantage of the recursive approach. However, we have

not yet addressed the relative comparison from the numerical point of view. This
important issue should be addressed. (study is currently in progress).

The significant reduction in computational load for the moving average LMSF makes
1t competitive for many real time processing applications.
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